
 

CHAPTER 3 Self-organization of drops in 2D 

microchannels 

3.1 PRELUDE 

A 2D microchannel is a channel with a Hele-Shaw type geometry which sandwiches drops 

between the upper and lower walls, allowing the drop to move only in the available 2D 

space. When drops flow in a 2D channel they can approach each other and interact 

hydrodynamically to form complex spatio-temporal patterns. The governing equations for 

fluid flow in microchannels is linear due to the creeping flow approximation ( ). 

However, particle motion in the flow field, in the Lagrangian description, can be expressed 

by  where v is non-linear in space and time. This makes the particle motion 

problem a non-linear problem which in several instances, has exhibited chaos6,119. When 

drops are involved, non-linearity arises due to two reasons: first is the non-linear velocity 

field of the continuous phase that will result in the motion of the drops inside the 

microchannel, and the second reason is coupling of the motion between the drop and the 

continuous phase. Drops in a 2D microchannel can interact to form ordered arrangements 

as observed by Jose and Cubaud53 or disordered ensemble as observed by Beatus and co-

workers40,41. When the drops are constrained by the upper and lower walls, there can be 

two configurations depending on the level of confinement. Drops can either retain their 

spherical shape when the depth of the channel (d) is greater than or equal to the radius of 

the drop as in the case of Jose and Cubaud53 , or squished like a pan-cake as 

observed by Beatus and co-workers in their experiments53 where the channel depth was 

smaller than the radius of the drop . The behavior of drops can be very different 

for the two cases. For the case where , drops are slowed down by the friction with 



the top and bottom walls generating disturbance fields which have dipole-like functional 

form, exhibiting long range interactions40,120. This dipole force affects the drop motion and 

pattern formation resulting in a disordered ensemble as drops move in the channel. The 

nature of the dipole force results in a range of interesting collective behaviors like coupling 

of drops, dynamic assembly and disassembly, phonon-like disturbance propagation, 

-1D and 2D microchannel systems.  

When , the drops move with a velocity faster than or very close to the superficial 

velocity of the continuous phase. As a result, the long range dipole forces are absent. In 

this chapter, we investigate the drop-pattern formation in 2D microchannels for operating 

regimes where, . Drops hydrodynamically interact to form ordered 2D 

arrangements. We study the dynamic pattern formation problem and propose models to 

relate the drop motion to the operation and geometry of the microchannel. The idea is to 

establish a direct connection between the patterns formed and the operating and design 

parameters so that the models can eventually be incorporated into design routines to 

identify methods to design and operate microchannels to arrive at spatio-temporal patterns 

of interest.  

3.2 AGENT BASED FRAMEWORK 

In an agent based approach to modeling drop motion, drops (agents) are modeled as point 

objects moving in the microchannel. They are assumed to be non-deformable which is 

typically the case when the capillary number associated with the flow is very low (surface 

tension dominates over viscous forces). The motion of drops is constrained to 2D which 

allows us to represent drops as circles. The analysis is restricted to cases where the drops 

do not coalesce- e.g. an incubator device under stable operation. Coalescence can be 

prevented by generous addition of surfactants to stabilize the emulsion9. But adding 

surfactant in excess would also increase the deformability of the drop. Instead one can 

employ a highly viscous continuous phase which increases the time required for the thin 

film between the drops to drain when they approach each other53. When drops reside in a 

2D microchannel for a time less than this drainage time, coalescence can be prevented. In 

this framework, it is also possible to model deformable drops while only accounting for 

the point mass of the drop, by capturing the anisotropic nature of the interaction that arises 

due to the deformation of the drop.  



In this chapter w

different forces on the drops as they move in the 2D microchannel. The modeling exercise 

is restricted to systems which have a top-down symmetry- simplifying the description of 

the direction of continuous phase flow in the channel needed to compute the various drop-

interactions. Once the different forces are quantified, the position and velocity of the drops 

can be estimated , as shown in Eq(3-1), for 

all the drops simultaneously.  

 
(3-1) 

3.2.1 Interacting drop-traffic models 

Interacting drop-traffic models provide a simple description for the different forces acting 

on the drop as it travels inside the microchannel. For the case of a single drop moving 

inside the channel, far away from the walls, the only force it experiences is the drag force 

due to the flow of the continuous phase around the drop. This interaction is a result of the 

pressure driven flow that forces the drop to move. Inspired by the solution to the classic 

problem of fluid flow past a sphere, at low Reynolds number, the x-component of the force 

is assumed to be proportional to the relative velocity between the drop and the continuous 

phase67. The first term of the RHS of Eq (3-2) explains the relative velocity between the 

drop and the local average continuous phase velocity. One can also look at the x 

component force as a superposition of the forcing due to the flow of the continuous phase 

 and the damping force on the drop due to its movement in the 

viscous continuous phase . [Note: in this section we use  to represent 

continuous phase velocity and  to represent drop phase velocity]. 

Depending on the lateral position of the drop (y-position: assuming that the axis of 

symmetry of the channel is oriented along the x-axis), the total resistance offered for the 

flow for both the continuous and the drop phase varies67. The configuration where the drop 

is at the line of symmetry (x-axis) results in the least resistance for flow, which can be 

determined by calculating the pressure drop as a function of the y-position of the drop. 

When the drop is at this position the average velocities on either side of the drop in the y-

direction (above and below the drop) are the same because of the top-down symmetry of 

the microchannel. The y-component force on the drop acts in the direction that will reduce 

the difference in the velocities above and below the drop, locally ensuring least resistance 



for flow around the drop. Hence it takes the form . The damping force 

on the drop due to its motion in the viscous continuous phase is . The 

superposition of the two, results in  as explained by the 

second term in Eq (3-2). If  and  are the average velocities of continuous phase 

above and below drop , which has a velocity , then the force due to 

flow of continuous phase  is characterized by Eq (3-2) where  is the ratio of the 

velocity of continuous phase at the drop-continuous phase interface to the translational 

velocity of the drop. 

 (3-2) 

Knowledge of the approximate velocity profiles of the continuous phase fluid above and 

below the drop  and  respectively is essential to estimate the force on the drops. 

Similar to the solution to the pressure driven flow through infinite parallel plates, we 

assume a parabolic flow profile above and below the drop as shown in Eq (3-3) (chapter 3 

Figure 3-1 A) The velocity boundary conditions for a simple two phase flow system: stratified flow of two fluids bounded 
by rigid walls67; B) Boundary conditions to determine  and  for drop : the average continuous phase velocity is 

determined by integrating  over drop interfaces 4 and 3 and  over 5 and 6; C) Boundary conditions to determine 

 and  for drop : the average continuous phase velocity is determined by integrating  over drop interfaces 4 

and 3 and  between drop interface 5 and wall 6; D) Direction of force on the drops as a function of its position 
laterally. 



in Leal67). The term Ai in Eq (3-3) is kept the same for a given cross-section because it 

approximately characterizes the pressure gradient due to the resistance offered for the 

flow. One should note that Ai will be minimum when the drop is at the center, in the single 

drop case.
 

 

 
(3-3) 

When only one drop is present in the microchannel at a given area of cross-section,  

represents the velocity profile of the continuous phase bounded by the top wall and drop 

boundary and 
 
represents the velocity profile bounded by the drop boundary and the 

bottom wall. If there is a drop above and/or below the selected drop as illustrated in Figure 

3-1 B and C, then represents the velocity profile of continuous phase bounded by drop 

 and drop  and 
 
represents the velocity profile bounded by the drop boundary and 

drop  or the bottom wall. The constants in Eq (3-3) can be calculated using the boundary 

conditions for velocity that should be satisfied. Figure 3-1 A illustrates these conditions 

on velocity, for a simple case of stratified flow in a microchannel (chapter 2 in Leal67). 

The velocity of the fluids is equal to zero at the boundary (wall), which is commonly 

referred to as the no-slip condition. At the fluid interfaces, the velocity in the direction 

normal to the interface should be equal for both fluids, on either side of the interface, to 

satisfy the mass conservation, that is the kinematic condition. The tangential boundary 

condition for velocity however, does not have a sound physical basis as the normal 

velocity. Common practice it to adopt a continuity condition across the interface 

(phenomenological in nature); dynamic boundary condition which has worked well for a 

reasonable range of problems. Then the final condition on the velocities is mass 

conservation. The velocities integrated over the area of cross-section, should be equal to 

the total flowrate of the fluids.  

For a single drop traveling along the axis of symmetry of the microchannel, the only force 

acting on the drop would be the x-component of the force due to the flow of the continuous 

phase Ff which results in drop velocity as explained by Eq (3-4). 

 (3-4) 



Experimentally it has been observed by Jose and Cubaud53 that the velocity of the drop is 

proportional to the superficial velocity of the fluid in the 1-D geometry. In the network 

model, this information is explicitly used while calculating the velocity of the drops97,99. 

Sessoms et al. (2009) considered the effects of pressure drop on the continuous phase and 

drop phase separately and estimated the velocity of the drop as a multiple of the superficial 

velocity. In the drop-traffic models we consider internal circulations inside the drop, by 

stating that the velocity of the continuous phase at the drop-fluid interface is . In Eq 

(3-4)  and  are functions of . With boundary conditions and mass 

conservation, it is possible to express the constants in Eq. (3-3) analytically to get an 

expression for the velocity of the drop . On simplification, we get Eq (3-5) where d 

represents the depth in the direction perpendicular to the 2D flow area and H represents 

the width of the channel in the y direction (perpendicular to the longitudinal direction). 

Expanding the RHS of Eq (3-5) about , we see that the velocity is proportional to 

the superficial velocity. In a 2-D microchannel, the large cross section, presence of other 

drops and the complex flow fields complicate the determination of  associated with the 

drop.  

 

 

(3-5) 

The continuous phase flow around the drops, forces them to move in the channel. The 

geometry of the channel dictates the magnitude of this force on the drop. Depending 

on whether the 2D microchannel diverges or converges, drops can either slow down or 

speed up in the channel as a result of the mass conservation- which has been incorporated 

in the calculation of the average velocities around the drops. Hence based on the position 

of drops and the channel geometry, drops can experience different magnitudes of force  

which would facilitate relative motion between drops. When two drops approach each 

other the viscous continuous phase between them is drained. As the distance between the 

drops reduces, the drainage of the viscous fluid generates larger pressure fields due to the 

fluid motion in the thin region between the drops. This phenomenon is called the 

lubrication flow and is illustrated in Figure 3-2. When the distance between the drops 

reduce with time, the velocity profile of the drainage of fluid becomes steeper as shown in 



Figure 3-2 B. According to the Stokes equation for flow, the pressure forces are balanced 

by the viscous forces . Hence, as the gradient in the velocity increases, the 

gradient of pressure increases.  

This would result in a force ji
d  on the drops, which is referred to as the drop-drop 

interaction, that resists their relative motion as they approach each other as illustrated in 

Figure 3-2 (A). The functional form for the force for the asymptotic case where there are 

two drops approaching each other in unbounded flow, can be derived from Stokes equation 

with the thin film approximation39. The expression in Eq (3-6) explains the force between 

drops in the microchannel where ji  is the vector pointing form  with 

kd and  as tunable parameters. This drop-drop interaction force due to the lubrication flow 

is short ranged in contrast to the dipole interactions, that arise in a 2D channel when the 

drops are pancake like shaped due to confinement, which are long ranged40. The 

denominator term in Eq (3-6) which ensures that the drops never touch each other by 

allowing  at the limit . Hence coalescence cannot be 

simulated using the interaction term as explained in Eq (3-6). One has to provide additional 

conditions, like say a critical distance, beyond which the nature of interaction is attractive 

which pulls the drops together allowing them to attain a different configuration.  

 

where,  

(3-6) 

When a drop approaches a wall, it does not penetrate the wall. This is because of there is 

a Force on the drop due to the boundary bi
b , which is a result of the lubrication flow of 

Figure 3-2 A) Two drops approaching each other in a viscous medium drains the fluid between them; B) Drainage flow 
in the case of approaching drops can be conceptualized as fluid flow between two parallel plates: for a given flowrate 
Q, the gradient of velocity increases with decrease in the distance between the plates. 



the viscous continuous phase between the drop and the wall, that resists the approach. This 

force is computed by an expression as shown in Eq (3-7), where 1 and kb are tuning 

parameters, which has a functional form similar to Eq (3-6).  In Eq (3-7), bi  is the vector 

connecting the drop, to the closest point on the boundary. Drops flowing parallel to the 

wall experience no force due to the wall because the rate at which they approach it bi

goes to zero. Because the drops experience a force only when they are very close to each 

other or the wall, the effect of these forces are neglected when they are farther than .  

 

where,  

(3-7) 

3.2.2 Scaling analysis  

Once the different forces acting on the drops ar

second law of motion to estimate the position and velocities of the drops in the 

microchannel as outlined in section 3.2. One can non-dimensionalize Eq (3-8), to identify 

the relative importance of each of the terms in the equation. Every variable in the equation 

is expressed as a product of a non-dimensionalized variable, which is an term that 

varies from 0 to , and the corresponding scale as shown in Eq (3-9). Once the scales 

are substituted into Eq (3-8) the terms collected as shown in Eq (3-10) and (3-11). One 

will see that the Reynolds number multiplies the terms on the RHS of Eq (3-11), which 

represent the inertial contribution of the system. 

Figure 3-3 Drop approaching a wall (boundary) which results in lubrication flow that generates large pressures. The 
force on the drop acts in a direction along the line joining the center of the drop to the closest point in the boundary. 



 

 

 

(3-8) 

Scales for all the variables in Eq (3-8). Variables with a bar over them are  non-

dimensionalized. 

 

 

(3-9) 

Substituting the scales and collecting terms: 

 

(3-10) 

 

where  

(3-11) 

The very low Reynolds number (NRe<1) of the system would allow us to simplify the 

governing equations, where inertial contribution of system can be neglected, resulting in 

Eq(3-12). This is commonly referred to as the creeping flow approximation. 

 (3-12) 



3.2.3 Algorithm for simulating drop movement 

In this section the algorithm for solving the agent based framework, to determine the 

position and velocities of drops in the microchannel, is presented. 

Step 1. Initialize the positions of drops. 

Step 2. Compute the velocities of drops that satisfy Eq (3-12). 

Step 3. Update positions and go to Step 1. 

Evaluating Step 2 requires solving the force balance equations for every drop in the 

microchannel simultaneously. This would involve solving Eq (3-3), alongside the force 

balance equations for drops (Eq (3-12)). For the case of a single drop in the microchannel, 

the unknowns that have to be estimated at any given time instant would be: 

. The two boundary conditions on the walls, two drop-continuous 

phase interface conditions, one mass conservation condition, force balance equations in 

two dimensions. One can clearly see that there are equal number of unknowns and 

equations, seven in this case. This can be extended to the case of multiple drops where 

depending on the configuration of drops (number of drops at a given cross section), the 

number of unknowns vary.  

3.3 DYNAMIC PATTERN FORMATION 

3.3.1 Microchannel system 

To validate the agent based simulations, we compare our results with the experiments of 

Jose and Cubaud53. The microchannel used for the study is a linearly diverging-converging 

microchannel, with a top-down and fore-aft symmetries as shown in Figure 3-4. The 

Figure 3-4 Microchannel system chosen for validation of simulation results. Geometry same as 53 [dotted part in the 
microchannel is where the drop arrangement is seen; k=0.5; W=4.75 mm; H=5 mm; R=0.125 mm. 



dimensions of the microchannel are chosen to be same as in the experiments of Jose and 

Cubaud53 (k=0.5; W=4.75 mm; H=5 mm). When the drops enter the channel at a very 

small rate, a single layer arrangement is formed inside the microchannel. As the rate of 

entry of drops increase, the drops acquire a multi-layer conformation. The entry frequency 

is manipulated in the experiments by controlling the input velocity of drops and the initial 

spacing between them. However in the experiments of Jose and Cubaud53, these two 

manipulated variables were correlated as   where Lo is the initial 

spacing between the drops, R is the radius and Qc and Qd are the continuous and discrete 

phase flow rates, because of the dynamics of the drop-generator. For the purpose of 

validation, we used the same correlation in our simulations. For the simulation, all the 

geometrical parameters k, W, H and operating parameters v0, R, L0 [Figure 3-4] are kept 

the same as the experiments of Jose and Cubaud53 and the patterns formed are compared. 

3.3.2 Tuning the parameters  

The phenomenological nature of the forces results in tunable parameters  

that have to be tuned, to match the experiments quantitatively. From Eq (3-12), because 

the absolute values. Tuning is performed to make sure that the simulation was able to 

predict the different layered configurations for approximately similar operating conditions 

as in the experiments53. The uncertainty in the correlations provided by Jose and Cubaud 

(2012) that relate the operating conditions (ref section 3.3.1), made the comparison of the 

experimental data with the simulation results tedious. No rigorous algorithm was followed 

to tune the models. Constants that accompanied the solution to the asymptotic cases, as 

explained in section 3.2.1, are retained and the integers multiplying these constants were 

manipulated to tune the model. Tuning was done based on visual perception. The ease of 

tuning indicates the robustness of the simulation strategy to changes in the tuning 

parameters. These tuning parameters are functions of the system properties and geometry. 

Figure 3-5: One layer configuration: a) Multi agent simulation (>500 ms) ; b) Experiments 53; the 
microchannel employed is similar to one shown in Figure 3-4 with the image cropped to show only the drop-patterns 
[video enclosed in CD] 



Hence, once the tuning parameters are set, only the operating parameters need to be varied 

to identify the different structures formed inside the microchannel.  

3.3.3 One-layer configuration 

The drops entering the microchannel decelerate in the diverging section and accelerate in 

the converging section due to the increasing and decreasing cross-sectional area for flow. 

The distances between the drops decreases as they slow down and increases as they speed 

up in the microchannel. As the inlet spacing is reduced, the distance between the drops in 

the microchannel reduces and they start to interact hydrodynamically as explained by Eq 

(3-6). For an inlet spacing as large as  prior to the entry into the microchannel, 

a single layer of drops is formed as shown in Figure 3-5. One should realize that all the 

forces, the force on the drop due the flow (Ff) and the hydrodynamic drop-drop interactions 

(Fd) are constrained to the x direction for the single layer arrangement of drops. Absence 

of a y-component of force would mean that the drops can never escape the single layer 

conformation. To capture the effect of the y-component forces, the walls of the 

microchannel are modified with a very small random roughness factor. This results in a 

non-zero y-component of Ff [Eq (3-2)] which continuously perturbs the drops from their 

single layer arrangement, mimicking reality where disturbances are ubiquitous. As the 

drops start to interact, the y component of the force Fd, between the drops as explained by 

Eq (3-6) tries to push the drops to the next layer while the y-component of the Ff tries to 

preserve the single layer configuration. We observed that a competition between the drop-

drop interaction forces and the y-component of the force due to flow decided the stability 

of the single layer arrangement. For a given inlet spacing the simulation was carried out 

Figure 3-6 Two layer configuration: Multi agent simulation : a-140 ms, b-240 ms, c->500 ms [the drop-drop 
interaction is zero when drops are not approaching each other]; d.) Experiments 53; the microchannel employed 
is similar to one shown in Figure 3-4 with the image cropped to show only the drop-patterns [video enclosed in CD] 



for different random roughness in the wall. We observed that all the simulations were 

identical.  

3.3.4 Two-layer configuration: The phenomenon of layering  

When the initial spacing between the drops is reduced further , drops start to 

crowd in the diverging section of the channel. The small disturbance present in the system 

grows in time because of the drop-drop interactions, resulting in the displacement of a drop 

from the single layer arrangement. We term this phenomenon as the layering instability, 

which breaks the top-down symmetry of the single layered arrangement. Figure 3-7 (A) 

shows the rapid increase in the y-force due to the drop-drop interactions, as drops start to 

crowd in the channel. This force remains negligible (close to zero) when drops are in a 

single layer arrangement. Once the 1D drop-assembly is no longer able to house the 

incoming drops, this force- on the drops- pushes the drop in the y-direction to cause 

layering in the system. One can observe from Figure 3-7(B: 0.6-0.7 s) that as the y-force 

increases, number of layers in the channel also increases.  

Now the displaced drop is equally likely to move in the positive or the negative y-

directions. The random roughness ensures that the probability for displacement of drops is 

the same for both the directions. Because the drop-drop interactions are directed along the 

line joining the centers of two drops, the displaced drop upsets its neighbors, and this 

process continues resulting in a chain reaction that propagates through the drop-train in 

the microchannel [see Figure 3-6 a], offsetting the drops from their initial arrangement, 

causing layering. The drops as they come in, arrange themselves in two layers [see Figure 

3-6 b]. The steady state patterns look identical for multiple runs of the simulation with 

different random roughness. The difference is prominent only when we deal with the 

Figure 3-7 A) The y-component of force due to the drop-drop interactions Fd,y, which is the cause for layering in the 
system, plotted with time for different drops; B) Time evolution of the number of layers in the system at the onset of 
instability. Simulations are performed for  and (B) contains only the first drops to experience layering.  



motion of a small number of drops, where the choice of the displaced drop to move in the 

positive and negative directions can yield different results.   

We observe, from Figure 3-6 d, that the dynamics in the channel also breaks the fore-aft 

symmetry of the assembly. In our simulations to capture this effect, we had to neglect the 

force between drops when the drops are retracting which changes Eq (3-6) to Eq (3-13) 

with an additional condition . Figure 3-8 (A) shows the pattern formation when 

the drop-drop interaction term used in the multi-agent simulation is given by Eq (3-6).  

 

where,  

(3-13) 

This results in an arrangement which preserves its fore-aft symmetry during the dynamic 

pattern formation. This is contrary to what is observed by Jose and Cubaud in their 

experiments [Figure 3-8 (B)]. We observe that the force that resists retraction of drops 

because of the generation of low pressure zone between the drops is cancelled out by other 

forces which are currently unknown. This could be the reason why, neglecting the force 

during the retraction of drops allows us to capture the pattern formation in great detail as 

shown in Figure 3-6 c.  

In the converging section of the channel, the accelerating velocity field pulls the drops 

from the layered structure to form a single layer before exiting the channel [see converging 

section in Figure 3-6 c], because the size of the exit channel is of the same order of 

Figure 3-8 A) Multi-agent simulation of two-layer formation with the drop-drop interaction resisting drop retraction in 
the converging section. This results in a spatial structure with fore-aft symmetry (observe the boxed regions in the figure); 
B) Experiments of Jose and Cubaud53 which show the absence of fore-aft symmetry.  



magnitude of the size of the drop (2R). The asymmetry in the drop-drop interaction force 

allows us to capture this feature in the dynamic pattern formation.  

Beatus and co-workers observe transverse motion of drops from a steady 1D assembly in 

their experiments which, they refer to as the zigzag instability. Although this transverse 

movement qualitatively appears similar to the layering instability, the forces that result in 

the motion have very different origins. The zig-zag instability is a result of the asymmetry 

in the dipole-like interactions between the drops in the microfluidic crystal near the 

channel entrance40, while the layering instability is a result of the lubrication interaction at 

the diverging section due to the crowding of drops.  

3.3.5 Three-layer configuration 

For even lower initial spacing of drops (L0<16R), the single layer of drops initially formed, 

becomes unstable [Figure 3-9 a] as explained in the previous section and the drops 

temporarily assume a two-layer arrangement [Figure 3-9 b]. Unable to house the entering 

drops, the two-layer arrangement eventually becomes unstable [Figure 3-9 c] and the 

system drifts away to the next configuration where there are three layers of drops [Figure 

3-9 d, e]. The breaking of the two-layer arrangement is similar to that of the one-layer 

arrangement where the drop that moves away from the layered structure, perturbs all of its 

neighbor drops destabilizing both the layers. When the three layered assembly approaches 

the converging section, the drops are pulled away from the assembly before the drops exit. 

Figure 3-9 (Enhanced online) Three layer configuration: Multi agent simulation : a-75 ms, b-140 ms, c-207 ms, d-
320 ms, e->500 ms [the modified drop-boundary interaction was used as given in Eq (3-14)]; f.) Experiments 53 
[Enhanced online] [video enclosed in CD] 



But to make sure that the drops converged to the exit channel, it was necessary to consider 

an additional y-force on the drops near the converging section of the channel. The drop-

boundary interaction was modified, as shown in Eq (3-14), to provide this additional y-

force on the drops. In the converging section of the channel the drop structure breaks down 

in a complex manner to form a single layer of drops before exit. The multi-agent simulation 

was able to capture these fine qualitative details seen in the experimental videos like the 

zigzag nature of the middle layer of drops in the three-layer conformation [Figure 3-9 e 

Figure 3-10 (A) Dynamic pattern formation without the additional y-force as explained in (B), compared to experiments 
of Jose and Cubaud53; (B) The additional y-force that captures the exiting of drops is added by modifying the drop-
boundary interaction suitably. 

Figure 3-11 a) Time evolution of the number of drops in the microchannel for initial spacing that give one, two and three 
layers; b) A plot of the number of drops inside a microchannel as a function of the initial spacing between the drops prior 
to entry into the channel, along with the snapshots of the steady state patterns formed by the drops. 



and f]. For even smaller inlet spacing (L0<11R) multiple layers (>3) are observed.  This 

was possible only after the drop-boundary interaction was modified as in Eq (3-14). The 

values of the tuning parameters used in our simulations are summarized in Table 2.  

 

where,  

(3-14) 

As the drops enter the microchannel, they start to form a dynamic structure.  The number 

of drops inside the microchannel increases steadily till the drop front reaches the exit of 

the diverging converging microchannel. The number of drops inside the channel stabilizes 

and a steady dynamic structure is formed [Figure 3-11 a]. This is because the rate at which 

the drops exit is equal to the rate at which they enter. As the initial spacing is reduced, 

larger structures are formed and so the number of drops inside the channel also increases 

[Figure 3-11 b].  

Table 2: Tuned parameters 

 µR 

 3× µR2 

 5× µR2

 2.4R 

 1 

 2.4 R 

 10 R 



3.3.6 Multiple-layer configurations  

When the initial spacing between the drops is reduced even further, drops form multiple 

layered arrangements inside the channel as shown in Figure 3-12. The three-layer 

arrangement is no longer able to house the incoming drops, which results in further 

layering that leads to the increase in the number of layers in the channel. One can estimate 

the number of layers in the system by calculating the spread of drops in the lateral direction 

(y-direction), as shown in Figure 3-12 (E).  In our simulations we do not get a stable 

layered configuration which has an integral number of layers greater than three. The drops 

dynamically self-organize to form ordered arrangements for short periods of time, 

following which the assembly becomes disordered. The time evolution of layer formation, 

presented in Figure 3-12 E, shows the formation of a single layer of drops that eventually 

undergoes layering instability to result in the steep rise to the two-layer configuration. The 

plot plateaus a little near the two-layer regime, and once this configuration is no longer 

stable, the system transitions to a three-layer configuration which again becomes unstable 

resulting in configurations that lie in-between four and five layers. In this regime, drops 

self-organize to form ordered arrangements, for a short period of time, in the channel as 

seen in Figure 3-12 A (0.72 s) B(0.72 s) C(1.08 s). We observed, an ordered stable 

arrangement in the channel when our operating condition was . Though the 

number of layers was between four and five, a periodic spatial pattern was observed as 

Figure 3-12 Multiple layered configurations for various inlet spacing of drops given by, A) ; B) ; C) 
; D) ; E) Layers formed inside the channel as a function of time; F) Number of drops in the channel as 

a function of time. [videos enclosed in CD] 



shown in Figure 3-12 (D).  It is interesting to note that the drops arrange in a square lattice 

instead of a closely packed hexagonal configuration; drops in the central region of the 

assembly have a maximum of four neighbor drops. Jose and Cubaud53 reported similar 

packing of drops in their experiments.   

With further reduction in the inlet spacing of drops, the number entering the channel 

increases which results in the rise in the hold up of drops at steady state as shown in Figure 

3-13 (E).  At such high hold-ups we observed that drops form disordered arrangements in 

the channels.  Drops often pack tightly; the ones in the central region of the assembly have 

a maximum of six neighbors. As drops organize, they also dynamically arrange to form 

ordered assemblies with defects as seen in Figure 3-13 (A- 0.8s, B- 0.4s, C-0.8s). We were 

able to observe a layered arrangement which approximately had six layers, when the 

operating condition was , as shown in Figure 3-14. However, the ordered 

arrangement was not a perfect six layer as reported by Jose and Cubaud53 (compare Figure 

3-14 A with D). This may either be due to the simplistic description for the y-direction 

force on the drop- due to the flow of continuous phase, the piecewise nature of the drop-

drop interaction force- which perturbs the assembly continuously as drops enter at high 

frequencies, or due to the uncertainty in the correlations for the operating conditions 

Figure 3-13 Disordered ensemble of drops formed dynamically for various inlet spacing of drops given by, A) 
; B) ; C) ; D) ; E) Layers formed inside the channel as a function of time; F) Number 

of drops in the channel as a function of time. [videos enclosed in CD] 



provided by Jose and Cubaud- which does not allow us to identify the window of operation 

that would yield the desired pattern.     

3.3.7 Dynamics upon flow reversal 

One of the consequences of the linear governing equations (Stokes equations for flow) is 

the time reversal symmetry.   In a multi-agent system, the interactions and the relative 

motion of agents can render the dynamics non-linear and irreversible with respect to time. 

In our system, equally spaced drops enter the channel and form different patterns.  If the 

system exhibits time/flow reversal symmetry, one would expect the drops to retrace their 

path and exit the channel to give back the equally spaced initial configuration. In our 

system, the layering instability breaks the fore-aft symmetry of the dynamic pattern as 

observed in (Figure 3-8b and Figure 3-9 f and other multi-layered arrangements).  With 

the flow reversed, the drop-assembly will dynamically rearrange to result in a new steady 

configuration which is a mirror image of the initial steady state structure with the fore-aft 

asymmetry. Figure 3-15 shows the dynamics of this rearrangement for the two-layer and 

three-layer cases. The drops are allowed to enter the channel where they form layered 

arrangements. Once a steady configuration is attained, the direction of flow is reversed. In 

Figure 3-15, the snapshots corresponding to time~0, marks the point in time when the flow 

Figure 3-14 Six layered arrangement: A) dynamic pattern formation when ; B) Layers in the channel as a function of 
time; C) Hold-up of drops in the channel as a function of time; D) dynamic pattern in the experiments of Jose and Cubaud53

for . [video enclosed in CD] 



is reversed. Now the drops as they exit, rearrange due to the asymmetry in the entry and 

exit dynamics to form the new steady state configuration (Figure 3-15: A- time~0.0875s 

and B- time~0.5s), which is a mirror image of the steady state configuration at time~0. 

Hence the drops will not retrace their path during flow reversal to reach its initial 

configuration rendering the dynamics irreversible- which implies the absence of time 

reversal symmetry. This is in fact the reason why the interacting drop traffic models are 

able to capture the dynamics of the system only after suitable modifications, to the models 

as shown in Eq(3-13) and (3-14), which break the symmetric nature of the drop-drop and 

drop-boundary interactions respectively. It is interesting to note that, in the two-layer 

configuration when drops rearrange, they form an intermediate configuration which has 

fore-aft symmetry for a short period of time. Also the time scales associated with this re-

arrangement strongly depends on the nature of the drop-assembly. The transition in the 

case of the two-layer arrangement happens in approximately 0.0875 s while for the three-

layer case it takes about half a second.  

3.3.8 Quantitative characterization  

The minimum distance between drops, for a given operating condition, is estimated. It is 

found to be in good agreement with the experimental results as shown in [Figure 3-16a]. 

A comparison of the velocities of the drops inside the microchannel, normalized with 

respect to the velocity in the inlet 1D channel, with the experimental results is showed in 

Figure 3-16b. The multi-agent simulation was able to predict the trend in the velocity 

profiles which was similar to the superficial velocity profiles for the channel geometry as 

Figure 3-15 Once the drops organize to form a steady state pattern, which corresponds to time=0, the flow direction is 
reversed: A) Two-layer arrangement ; B) Three-layer arrangement . The patterns near the entry and 
exit, marked by the boxed regions in A and B corresponding to time=0, are interchanged as the flow is reversed. [video 
enclosed in CD] 



experimentally observed by Jose and Cubaud53. The fluctuations in the velocity profiles 

can be attributed to the piecewise nature of the functional forms Eq (3-6) and (3-7).  

3.4 EFFECT OF GEOMETRY IN PATTERN FORMATION 

The multi-agent simulation establishes the connection between the rich patterns formed by 

the drops and the geometry of the microchannel. One of the important insights gained, 

even with the drop-drop interactions, the velocity of the drops lies in the neighborhood of 

the superficial velocities [Figure 3-16b]. This fact helps us to understand pattern formation 

qualitatively. One might be interested in understanding the characteristic features of the 

microchannel that was responsible in the formation of the rich patterns.  From Figure 

3-16b, it is clear that we can approximate the velocity field inside the microchannel as a 

combination of linear decrease of velocity with length at the entrance, flat low velocity 

mid-region and a linear increase of velocity near the exit. The deceleration field near the 

diverging entrance and low velocity in a large part of the mid-section are the two 

characteristic features of the superficial velocity of the microchannel under study 

(rectangular) that we believe influences the pattern formation. To address this issue, we 

investigate the dynamics of drops in four different channels. All the four microchannels 

considered have the same minimum and maximum width of the channel (in the y direction) 

as that of the rectangular channel. This ensured that the inlet and the minimum superficial 

velocities were identical. The initial spacing between drops that were used to compare the 

Figure 3-16: A) The minimum distance between two drops inside a microchannel as a function of the inlet spacing: 
comparison between the experimental results and empirical correlation53 with the Multi-agent simulation; B) velocity of 
drops as a function of its position in the channel: comparison between the experimental results 53 with the Multi-agent 
simulations. [Experimental data was digitized from Jose and Cubaud 2012]; 



dynamics, were the same as the ones that gave one , two  and three 

 layer configurations for the rectangular microchannel.  

First we consider Microchannel-1, with superficial velocity fields, linearly decreasing and 

increasing along the length [Figure 3-17 a]. From Figure 3-17 c, e, g one can observe that 

Figure 3-17: (a) velocity profile of microchannel-1 (c), (e), (g); (b) velocity profiles of microchannel-2 (d), (f), (h); (c)-(h): 
Microchannels with superficial velocities linearly decreasing in the diverging section and linearly increasing in the 
converging section; (i) velocity profile of microchannel-3 (k), (m), (o); (j) velocity profiles of microchannel-4 (l), (n), (p);  (k)-
(p) Microchannels with linearly decreasing superficial velocity in the diverging section followed by a region of constant 
velocity followed by a linearly increasing superficial velocity in the converging section [videos enclosed in CD] 



the drops did not layer as expected. Now the next question would be to find out the features 

of the microchannel that will result in pattern formation. This encouraged us to design 

Microchannel-2 in which the length of the diverging section is increased [Figure 3-17 b, 

d, f and h]. We can observe from Figure 3-17 d, f, h that the drops layered as expected and 

could form one and two layers and two layers becoming unstable. In comparison with the 

Microchannel-1, the rate at which the superficial velocity decreased along the length of 

Microchannel-2 is lower. This feature of the microchannel aids in the formation of layered 

arrangements. Deceleration of drops in microchannel-2 is lower than 1 but the time spent 

by drops in the diverging section is higher in 2 than in 1. Because the drop feeding rate is 

kept constant for both the microchannels, the number of drops in the diverging section of 

microchannel-2 is greater than that of 1. This results in more crowding of drops and aids 

in the formation of layered configurations.   

Microchannel-3 is designed to understand the effect of the low-flat-velocity mid-section 

in the microchannel [Figure 3-17 i]. From Figure 3-17  k, m and o, it is clear that the 

patterns formed are close to one, two and three layers. This is the result of the similarity 

between microchannel-3 and the rectangular microchannel because the velocity profile of 

3 [Figure 3-17 i] captures features of the velocity profile of the rectangular microchannel 

[Figure 3-16 b]. Dynamics of drops in microchannel-2 helps us to understand the role of a 

slowly diverging section of a microchannel in pattern formation. Hence microchannel-4 

was designed with an intent to understand the combined effect of the slow deceleration 

and flat velocity sections of the microchannel [Figure 3-17 j]. From Figure 3-17  l, n and 

p, one can conclude that the qualitative features of the patterns formed are the same as 

microchannel-3. The increased number of drops and close packing of drops in the patterns 

formed in microchannel-4 are due to the excessive crowding of drops in the slow diverging 

sections. It becomes clear from the above analysis that the low-flat velocity mid-section 

of the microchannel has a greater effect on pattern formation than the decelerating field 

from the diverging section of the microchannel. This is the reason for the rich patterns 

observed by Jose and Cubaud53 in their rectangular geometry.  

3.5 DROPS AND VEHICULAR TRAFFIC 

Traffic of vehicles is not very different from that of drops in microchannels. Our 

experience with driving has helped in understanding the similarities and differences 



two drivers, A and B, with B behind A separated by an instantaneous distance , on a 

straight line moving in the same direction. When A slows down, either because the 

destination is near or to take a turn, B will also slow down to avoid impending collision.  

This changes the distance between the vehicles which results in non-zero : when 

 A and B approach each other. Now the dynamic response of B to the slowing 

down of A, is dependent on the rate of approach  and relative distance . When 

A and B are very far from each other ( ), B may not be affected by the change 

in the relative distance . As A and B reach the interacting distance, where 

, as illustrated in Figure 3-18 (case I), one would expect B to react calmly to the change 

in the relative distance between A and B. However, when they are very close to each other, 

the reaction that B exhibits to slow down, would be greater as illustrated in Figure 3-18 

(case II). From this scenario, one can easily deduce the ( ) functional dependence 

of reaction ( ) of B on . It is also observed that vehicles can travel together without 

any reaction from B as long as A and B do not approach each other or move away from 

each other ( ). One can summarize the above mentioned effects mathematically, 

as shown in Eq (3-15).  

The functional form for the reaction of the trailing vehicle B is observed to be analogous 

to the drop-drop interaction term described in Eq (3-13). Traffic of drops in a microchnnel 

Figure 3-18 Two vehicles A and B which are spaced apart are approaching each other at a rate equal to. I and II 
correspond to scenarios where the vehicles at a particular instant of time are spaced apart differently. The reaction of 
vehicle B to slow down would be higher for case II where the vehicles are closer to each other compared to case I. 



is a result of hydrodynamic interactions due to lubrication flow while vehicular traffic is a 

consequence of human decisions during driving. The length and time scales associated 

with both the phenomena and the nature of interactions are very different. Yet the 

mathematical equivalence between the two phenomena is fascinating.  

 (3-15) 

Another interesting similiarity is the phenomenon of layering. Drops layer in a 

microchannel as consequence of crowding. In traffic flow, especially on Indian roads 

where lane flow is seldom enforced, one can observe vehicles overtaking other vehicles to 

move ahead as shown in the boxed regions of Figure 3-19. In both cases one can observe 

common reasons for layering: the inability of the entity to move forward (due to the slow 

moving preceding drop or vehicle) and the drive to move forward (relative velocities due 

Figure 3-19 Images of Indian traffic (picked from random sources in the Internet) where layering is observed. Drivers in a 
non-lane road in India often choose to cut lines in an aim to move forward. The regions in the images marked by dashed 
curves show instances of layering. 



to the flow fields of the diverging geometry in the drop-traffic case, wheras it is a driver 

in a hurry in the vehicular traffic case).  

3.6 CONCLUSION 

An agent based framework is employed to study the complex, dynamic pattern formation 

of drops in 2D microchannels with a top-down symmetry. Interacting drop-traffic models 

are proposed, which are a set of phenomenological models, that approximately quantify 

the different forces acting on the drops as they flow in the microchannel. These models are 

then incorporated into a multi-

motion to determine the position and velocity of drops in the channel. The results of the 

simulation are validated with the experiments of Jose and Cubaud53 reported in the 

literature. Though the models used for describing the forces are simple, it is very 

interesting to observe a quantitative match between our numerical simulations and 

experiments. The multi-agent simulations capture the dynamic crowding of drops which 

ultimately leads to a layering instability that results in ordered drop-arrangements. The 

layered configurations observed by Jose and Cubaud lack fore-aft symmetry due to the 

absence of time-reversal property. By modifying the interacting drop-traffic models 

suitably, we are able to capture this asymmetry in the patterns formed. We observe that 

the velocity of the drops is always in the neighborhood of the superficial velocity 

corresponding to the microchannel. This allows us to build a set of microchannel 

geometries to understand qualitatively, that feature in the superficial velocity profile 

corresponding to the geometry used by Jose and Cubaud53 that results in the formation of 

multiple layers. 


