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1 Some comments on the asynchronous and probabilistic nature
of interactions

The model we present (section IT of main text) is a non-trivial extension of the mean-field model developed
by Jhawar et al. [2020; inclusion of space and variable speed. Similar to other agent-based models employed
in this field, agents align with their neighbours and attract to them. Individuals also maintain a minimum
distance with their neighbours to avoid collision and also turn spontaneously (Huth and Wissel [1992, Huth
and Wissel 1994 Couzin et al. 2002, Hemelrijk and Kunz [2005, Hemelrijk and Hildenbrandt 2008, Jhawar
et al. 2020)).

The distinct features of our model are that interactions are,

1. probabilistic: modelled as independent stochastic events, owing to the inherently probabilistic nature
of animal interactions and

2. asynchronous: every fish interacts via one kind of interaction, at a randomly chosen time.

While some models in literature have some of the above features, there is none that incorporates all of them
simultaneously.

The speed and direction of individuals in the school change due to the following reasons: i) interac-
tions and reactions independently change the speed and direction of motion of the agents stochastically;
i1) collision avoidance—agents slow down and change direction when they encounter another agent. This
appears as a course-correction term to the agent’s instantaneous velocity.

We use continuous-time Gillespie simulation (Gillespie [1976, Gillespie |1977) to model the stochastic at-
traction, spontaneous turning and alignment events for every agent. The time for an event (a particular
interaction) for a given agent is sampled from an exponential distribution with mean corresponding to the
rate of that interaction. This ensures that the time of the event is independent of the agent’s past interac-
tions. Note, that while the velocity of the agents change only as interaction events happen, the positions of
the agents are updated at every time step in a regular fashion.

Fish avoid collisions by adjusting their speed and orientation with respect to neighbours (observed by
Katz et al. 2011, Herbert-Read et al. 2011}, Lei et al. 2020)). In typical computational models, speed is either
a constant or independent of its neighbours. In our model, speed—change during an interaction depends on
the state of the agent and its neighbours in the following ways: i) when an agent is attracted to an agent
far away, it moves faster; i) an agent copies the speed while copying the direction during alignment.



2 Sensitivity to parameter values

The range parameter values explored in the study are given in (Table.

Parameter Unit Symbol Value(s) explored
Spontaneous rate s~1 Ts 0.1-5.0
Alignment rate st Tp 0.15-10
Attraction rate g1 Ta 0.1-10
Visual Field Degree 0, 90° — 360°
Desired Speed cms™! S0 0.2-1
Maximum Speed cms™! Smazx 5 X 89
Agent size cm R 0.2

. 2 O
Variance of angu- rad Oa 55730
lar  displacement
(spontaneous turn)
Variance of speed cm?s2 O 50
(spontaneous turn)
Relaxation time for S T 0.2
speed
Relaxation time for S To 0.5
angular speed
Distance- cms™! Ka 1072 -1
dependent attrac-
tion (coefficient)
Distance- 1 vy 3-10
dependent at-
traction (order)
Zone of repulsion cm zor 1.2
Distance- cm? Koy —-1073 - —1
dependent re-
pulsion (coefficient)
Distance- 1 153 3-10
dependent re-
pulsion (order)
Maximum distance cm € zor - 3 X zor

between agents to
belong to the same
cluster

Table 1: Summary of model parameters.

In this section, we show that the qualitative features of our primary result (cohesion parameter as a
function of the topological neighbourhood; figure 2b in main text) is robust to changes in parameters in the
model. Throughout the SI text, unless mentioned same parameter values reported in the main text are used

and the group size is set to 30.



We begin by varying the parameters determining the strength of attraction and repulsion (kq, k., 3, and
v). We find that the cohesion parameter (C) does not change qualitatively (figure [1)).
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Figure 1: Cohesion parameter C depends on the topological neighbourhood K in a qualitatively similar
manner (like in figure 2B of main text) across a range of parameters that describe how attraction/repulsion
are implemented.

Next, we vary the interaction rates (alignment, attraction) on the schooling dynamics, one at a time
while keeping the other constant.

We first vary the attraction rates from 0.1 events per second to 10 events per second. When the attraction
rate (r,) is very low (~ 0.1 s71), the group fails to be cohesive for all values of K . This is not surprising
given that attraction interaction is central to the group-cohesion. When attraction rates are low, agents do
not interact with sufficient number of neighbours within a given time. Consequently, the group breaks into
smaller clusters and do not stay cohesive. As the attraction rate (r,) increases, the groups are cohesive, and
the K required to achieve a similar cohesion parameter decreases with an increase in attraction rates (figure

Ba).

Second, we vary the alignment interaction rates in a similar manner. Although alignment stand-alone
cannot ensure group cohesion (Section , along with attraction interaction, higher alignment rates give rise
to higher cohesivities (figure [2b)).

Third, we vary the desired speed of the agents from 0.1 to 1. We find that agents escape the group, often,
resulting in lesser cohesivity (figure .
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Figure 2: Cohesion parameter C vs topological neighbourhood K trends observed across a range of interaction
rates and average speeds are found to have the same qualitative features as figure 2B of main text. (a)
We observe that Cohesion Parameter C increases with an increase in attraction rate r, for fixed values of
alignment and spontaneous interactions, 0.5 s~ and 1.5 s~! respectively. (b) Alignment rates facilitate
group cohesion in presence of attraction interaction. ry = 1.0 s™! and r, = 0.5 s71. (c) Cohesion Parameter
(C) decreases with the average speed of agents as agents in the group move apart easily.

Next, we study the effect of the size of the visual field of the agents on cohesion. When the visual field
is too narrow, the agents fail to be cohesive. As the sight increases, the groups become more and more
cohesive (figure . However, we do not observe any monotonic increase in cohesion with an increase in
visual field. Also, for higher visual fields (sight > 300°), larger K is required to achieve the same cohesion
as that achieved for lower visual fields (210° < sight < 270"). However, note that the qualitative features
of C vs K are similar across the broad range of visual fields.

Further, to check the generality of our findings, we also modify our model by removing its key compo-
nents like its probabilistic nature of the interaction, i.e., in this case, an agent interacts via all three types of
interactions (alignment, attraction and spontaneous change) simultaneously. However, the time for an agent
to interact is still chosen stochastically, and different agents interact at different times. In a second variant
of the model, all the agents interact via all the interactions simultaneously. Nevertheless, the time chosen
for agents to interact is still chosen stochastically with a constant rate. We call these models Model-1 and
Model-2, respectively. In both cases, we find that the results do not change qualitatively (figure . How-
ever, these non-probabilistic and semi-synchronous models result in more cohesive groups than the model
discussed in the main text.
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Figure 3: Cohesion parameter C vs topological neighbourhood K trends observed across different values of
agent-vision and the different variants of the model are found to have the same qualitative features as figure
2B of main text. (a) Cohesion Parameter (C) is negligible for narrow visual angle and increases when agents
have a wide visual angle. (b) Variants of Model-1 and Model-2 yield similar results as the original. We also
find these semi-synchronous models to give rise to slightly more cohesive groups than the model discussed
in the main text.

We also investigate an alternate method to quantify group cohesion to ensure that the study is not sensi-
tive to the choice of the order parameter. Cohesion parameter in this case C; is defined as the fraction of time
the group was cohesive during the simulation. Isolated agents are treated as ‘noise’. Only when a pair or
more break away from the group, it is considered non-cohesive. For example, if a group of size 4 breaks into
sub-groups of sizes 1 and 3, we consider it a single cluster and therefore cohesive according to this definition.
For this definition of cohesion parameter (C;), we observe that C; is close to zero till a critical K after which
C; increases non-linearly (figure . Here, we want to emphasise that even if just two agents out of 50 break
away from the group, we say the group is not cohesive for this definition of cohesion parameter. However,
the broad features of C; vs K are qualitatively similar to that of C vs K reported in figure 2b of main text.

We also compare if the cohesion parameter (C,) defined in the main text depends on the choice of e. The
results are qualitatively similar independent of ¢ (figure . For very small values of €, it appears as if the
group is not cohesive. This is mainly because, within this distance, i.e., ¢ < zor, the agents are trying to
move away from each other. However, this does not imply that the group is not cohesive.
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Figure 4: (a) Alternate metric to quantify cohesion (C;), based on the fraction of time the group was cohesive,
plotted for different group sizes. For large group sizes, C; is found to be close to zero till a critical K after
which C; increases rapidly. (b) Cohesion Parameter (C), as defined in the main text section 2, evaluated for
different values of € show that the qualitative features of C vs K remain the same.

In the main text, while discussing results, we state that the cohesion parameter saturates as the ratio of
the topological neighbourhood to the total group size approaches 0.3. However, it is important to note that
this ratio decreases for higher interaction rates, r, and r, (figure |5a and , and lower speeds (figure .
For very high attraction rates (for example, 7, = 10 s~!), the agents interact many times with neighbours
with a given time window (t,). This ensures a dense interaction network even for small K. Hence, the
topological neighbourhood required to achieve cohesive groups reduces for high interaction rates (figure [5a)).
Thus reducing the ratio discussed in the main text. Similarly, when the alignment rates are very high (for
example, 7, = 10 s71), the agents mostly tend to move in the direction of their neighbours. Hence, in this
case, interacting with fewer neighbours, even for a low attraction rate, ensures group cohesion (figure .
We have also discussed that in the presence of attraction interaction, alignment interaction facilitates group
cohesion. A similar trend is observed when we reduce the speed of agents. As the agents move slowly, it takes
them a lot of time to move away from each other. Attraction interaction with fewer topological neighbours
within this time interval suffices to bring the agents back together (figure .
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Figure 5: The threshold ratio (%) at which cohesion parameter saturates, decreases as interaction rates

increases or speed decreases. (a) - Higher attraction rates at r, = 10 s™!, (b) - Higher alignment rates at
rp, = 10 s7!, and (c) Lower movement speeds at so = 0.05cms™'. Except the specific parameter that was
1

changed, the others were set to: ry =1s7%, 7, =157 r, =1s7! and sp = 0.2cms™ .

3 Attraction interaction with unique neighbours

We calculate the number of unique neighbours an agent interacts with, to understand the effect of K on
cohesion. We construct graph G as discussed in the main text, Appendix B. We then compute out-degree for
each node in G, i.e., number of neighbours node i was attracted to. We find the average number of unique
neighbours an agent is attracted to within a time window, t,, increases with K. Therefore, for smaller
K, particularly when K = 1, agents interact with the same neighbour in the time window over which the
network was constructed.



107

(1))
0 e
®

3 8
0
L
o
°o 6
2
“g’ N=3
g N=5
- N=7
c N=10
0 N=15
2 N=30

o N=50

0 1 1 1 1 I
0 10 20 30 40 50
K

Figure 6: The average number of unique neighbours an agent interacts with increases rapidly with K for all
group sizes.

4 Attraction interaction networks are sufficient to characterize
cohesion

It is well known that both attraction and alignment interactions affect group cohesion. While attraction
interaction brings the agents close to each other, alignment interaction ensures that agents do not move in
directions independent of other agents. Hence, to understand which of these interactions one should use to
construct the network, we explore which of the contributions of these social interactions to cohesion.

To understand the role of attraction, we set the rate of alignment to zero. This ensures that any group
cohesion observed in our simulation is because of the attraction interactions and not alignment. We then
calculate the cohesion parameter (C) as a function of K. Similarly, to study the effect of alignment on
cohesion, we set the attraction rate to zero.

Figure [7] shows how C varies with K for these two cases. We see that attraction interactions achieve high
levels of group cohesion, while alignment alone cannot ensure group cohesion. We would like to reiterate that
our simulations are in an unbounded domain, where agents can drift apart even if they are moving in ap-
proximately the same direction. Therefore, we conclude that it is sufficient to look at attraction interactions
to understand the emergence of cohesion in groups. However, it is essential to note that alignment inter-
actions can facilitate cohesion in the presence of attraction interactions, changing C quantitatively (ﬁgure.

Though alignment interactions alone cannot increase group cohesion, attraction interactions are found
to give rise to significant group polarisation (inset of figure . Polarisation is defined as %| > i 2|, where
v; is velocity of agent ¢ and v; is its speed. This is in line with the findings of Strombom et al. 2019, who

argue that asynchronous attraction interactions can give rise to cohesion.

Nevertheless, it is important to note that these results for simulation time 7" = 3500s are for low alignment
rates. For very high alignment rates (r, > 10 s~1), as all the agents move in the same direction because of
high rates of alignment and little stochasticity (rs = 1 s71), it takes a very long time for them to diffuse
apart, but they diffuse eventually. So, even for very high alignment rates if we carry out simulations for very
long times (7' > 10000s) the agents fail to stay cohesive.
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Figure 7: Group cohesion due to alignment interaction alone without any attraction interaction and wice
versa are explored. (a) With only alignment, the group is not cohesive for all values of K for all group sizes
N. (b) With only attraction, groups of all sizes are found to be cohesive (with increasing K') irrespective of
the low values of group polarisation (see inset), which shows that attraction interactions play a crucial role
in group cohesion in unbounded pairwise interacting systems.

5 Attraction interaction network analysis is consistent across pa-
rameters

We show that the network analysis works well across different trends observed in group cohesion. We com-
pute network parameter (N,,) for various parameters where the group cohesion is minimal (low sight angle),
intermediate (for high cruise speed or) and very high (high attraction and alignment rates). When the
sight angle is low (180°), the agents are unable to ‘see’ their neighbours, consequently unable to interact
with them, which can be seen through the measure of network parameter. Therefore, irrespective of the
neighbours, the agents can perceive they cannot stay cohesive (figure .

When the cruise speed is high (s = lems™!), even though the agents interact with their neighbours
through attraction, they quickly move away because of spontaneous interaction or interaction with other far
away neighbours. The agents are unable to form ‘well connected’ networks, therefore, failing to achieve high
group cohesion (figure , and we only observe intermediate levels of cohesion.

We also consider the case where attraction (and alignment) rates are very high (r, = 20 s™!). In this
case, the agents interact with large number of neighbours with in a give time, hence resulting in dense
interaction network and therefore very high group cohesion (figure . As discussed in section [4] alignment
interactions too facilitate cohesion in presence of attraction interaction. So, as the alignment rates are very
high in this case (r, = 20 s™1), we see that in figure for lower K’s, C < N, as we don’t account for
alignment interaction network in network analysis.
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Figure 8: Network parameter N, is found to have the same qualitative features as C with topological
neighbourhood K, for a variety of different group cohesivities. (a) - Case where group cohesion is very low
for all K (achieved by setting a narrow vision for agents); (b) - Case where group cohesion is intermediate
(by setting a high average speed); (c) - Case where group cohesion is very high (by setting very high for high
attraction and alignment rates).

Span shots of networks constructed over consecutive time windows are given in figure[9a] and [0b] In figure
[9a] and [9b] circular dots represents the heading of agents in 2-D space. The neighbours they were attracted
to within the time window t,, are shown through blue arrows. The direction of the blue arrow indicates the
direction of attraction interaction. As defined in section III of the main text, agents belonging to the same
sub-group are marked with the same colour. Agents belonging to the same cluster is also shown.

For, high attraction rates (r, > 0.5 s71) and large K’s (K > 0.3N, for the parameters used in the main
text), we see that the network is dense with network parameter, AV, = 0.9 and cohesion parameter, C = 0.9.
We observe that whenever the network is ‘well-connected’, the agents tend to stay cohesive for longer times
(figure . And, even if they break apart the network ensures that they won’t drift apart.

For, low attraction rates or K = 1 (in figure , the agents form a cluster of size 2-6 for N = 10 at
some instances of time as they are attracted towards each other. For example, agents 1,2,3,5,7 and 8 in the
figure @ form a cluster, therefore resulting in C, = 0.6. However, the network is not ‘well connected’ as
the interactions are only from one side. For example, agents 1 and 3 do not interact with 5 or 8; therefore,
the cluster can break apart easily as all the agents are not interacting with all the other agents directly
or indirectly — as observed in figure (M, = 0.2 in this case). Consequently, we observe C > N, and
C,N, << 1 for these values. Hence, we observe low group cohesion for low attraction rates and small K.

Therefore, it is important to note that when the attraction rates are very low or K = 1 for higher NV,
the agents are partly cohesive, but the interactions are sparse; hence the network is not fully connected. As
the agents do not form a ‘well connected’ network, they break apart often. Therefore, low group cohesion.
Hence, we argue that it is crucial to forming a ‘well-connected’ network to achieve a large cohesion parameter
and to sustain it for a long time.
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Figure 9: Clusters and sub-groups formed during collective motion are shown for two sets of snapshots of the
simulation. Directed networks based on attraction interaction are constructed over a time window t¢,, = 10 s,
represented by blue arrows. The circular dots and orange arrows represent the heading of the organisms.
Agents belonging to the same sub-group are marked with the same colour. Agents belonging to the same
cluster are marked by dotted convex hulls. (a) - Network is constructed for K = 3, 7, =0.5s7%, r, =1 51
and ry = 1 s7!. The network is dense, hence the group is cohesive. (b) Network is constructed for K = 1,
reg =0.58"1 rp, =1 s~! and r, = 1 s~!. Network is sparse, the clusters break apart often, as observed in the
consecutive snapshots. Note here that the number of sub-groups are greater than the number of clusters.
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